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Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters

Mark I. Stockman
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303

~Received 6 May 1997!

Statistical and localization properties of dipole eigenmodes~plasmons! of fractal and random nonfractal
clusters are investigated. The problem is mathematically equivalent to the quantum-mechanical eigenproblem
for vector~spin-1! particles with a dipolar hopping amplitude in the same cluster. In fractal clusters, individual
eigenmodes are singular on the small scale and their intensity strongly fluctuates in space. They possess neither
strong nor weak localization properties. Instead, an inhomogeneous localization pattern takes place, where
eigenmodes of very different coherence radii coexist at the same frequency. Chaotic behavior of the eigen-
modes is found for fractal clusters in the region of small eigenvalues, i.e., in the vicinity of the plasmon
resonance. The observed chaos is ‘‘stronger’’ than for quantum-mechanical problems on regular sets in the
sense that the present problem is characterized by~deterministically! chaotic behavior of the amplitude corre-
lation function ~dynamic form factor!. This chaotic behavior consists of rapid changes of the phase of the
amplitude correlation in spatial and frequency domains, while its magnitude is a very smooth function. A
transition between the chaotic and scaling behavior with increase of eigenvalue is observed. In contrast to
fractal clusters, random clusters with nonfractal geometry do not exhibit chaotic behavior, but rather a meso-
scopic delocalization transition of the eigenmodes with decrease of eigenvalue.@S1063-651X~97!01112-4#

PACS number~s!: 05.45.1b, 71.45.Gm, 78.20.Bh, 61.43.Hv,
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I. INTRODUCTION

The problem of properties of disordered systems is
universal significance in physics. There is a wide class
mutually related phenomena associated with disord
Among those phenomena are localization of elementary
citations ~quasiparticles and eigenmodes!, fluctuations and
enhancement of local fields, correlation of such fluctuatio
and spatial-temporal chaos, including quantum chaos
turn, the correlation of fluctuations is related to the line
response function of a system by the fluctuation-dissipa
theorem@1#. In this paper we consider localization, spatia
correlated fluctuations, and chaos of polar eigenmodes~tra-
ditionally called ‘‘plasmons’’! of large disordered clusters
This problem maps~i.e., it is mathematically equivalent! to a
tight-binding eigenproblem for the Schro¨dinger equation for
a vector~spin-1! particle.

Of the phenomena mentioned above, electron localiza
is responsible, in particular, for Anderson’s metal-insula
transitions@2#. A similar phenomenon of importance for us
localization of plasmons. Such a localization is intimate
related to fluctuations and enhancement of local electrom
netic fields in disordered systems, which cause surfa
enhanced Raman scattering from surfaces@3# and fractal
clusters@4#, and giant enhancement of nonlinear-optical
sponses of such clusters@5#. Physically, the localization o
plasmons is of principal importance for the optical-respo
enhancement because it is a near-zone analog of focusin
electromagnetic radiation~or it is a counterpart of the cre
ation of speckles by scattering of light waves from a rand
object!. The ‘‘focusing’’ ~or creation of speckles! of electro-
magnetic fields by plasmon localization occurs on a nano
eter scale rather than on a micrometer scale as in con
tional optical far-zone focusing. A near-zone focusin
similar to a far-zone optical focusing, creates local regions
high-field intensity, causing enhancement of nonlinear p
561063-651X/97/56~6!/6494~14!/$10.00
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toprocesses. Note that localization of plasmons in disorde
fractal clusters and creation of nanoregions of high loc
field intensity~speckles! have been experimentally observe
with the use of a photon scanning tunneling microscope@6#.
Similar to the conventional focusing, the nonlinear-optic
enhancement due to the plasmon localization is stronger
higher the order of nonlinearity@7#.

Because of the mutual mapping of a plasmon eigenpr
lem and the corresponding quantum eigenproblem, ano
field of relevance for the class of phenomena under con
eration is quantum chaos, which mathematically is chao
solutions~we will call them interchangeably eigenfunction
or eigenvectors! of the corresponding linear eigenproblem
~Schrödinger-type equations!. Among many properties o
quantum chaos, the most relevant for the present paper
real-space localization and spatial correlations of eigenv
tors. A partial localization of chaotic eigenfunctions is man
fested by their scarring@8,9#. Related properties are spati
correlations of the probability amplitudes~eigenfunctions!
and probability densities. A seminal paper by Berry@10#
conjectured that the Wigner density matrix for a nonin
grable chaotic system respects a microcanonical distribut
As a result, the spatial correlation function behaves as
Bessel functionj 1(kr), resulting in a power-law decay pro
portional to 1/r . Thus no long-range spatial correlation
wave functions should exist. The absence of long-range s
tial correlation in chaotic systems with time reversal~without
a magnetic field! has been confirmed analytically by Fal’c
and Efetov using the supersymmetrics model. Note that in
the presence of an intermediate-strength magnetic field~that
is, in the crossover region between orthogonal and unit
classes! weak long-range spatial correlation for electrons
predicted@11#. The widely used random matrix theory o
quantum chaos also does not include the long-range sp
correlations. In contrast to the above theories that are ap
cable to massive particles moving in potential fields, we w
6494 © 1997 The American Physical Society
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56 6495INHOMOGENEOUS EIGENMODE LOCALIZATION, . . .
show below that in our case there are long-range spatial
relations present in correlation functions of both amplitu
and probability~intensity!.

We consider both fractal~self-similar! and nonfractal ge-
ometries of clusters. There exists some understanding o
calization of eigenmodes in self-similar~fractal! systems. A
nontrivial geometry of localized eigenmodes described b
multifractal statistics@12# has been established recently f
vibrations of fractals~‘‘fractons’’ ! @13–16#. Localized vibra-
tional excitations of fractal drums at low frequencies ha
been found@17#. The polar excitations~plasmons! that are
considered in the present paper differ significantly from
brations mentioned above. We demonstrate below that
polar excitations exhibit a highly singular behavior throug
out the spectral region. In contrast, for instance, the vib
tional excitations of fractal drums are multifractal only f
large enough wavelengths~low frequencies! @17#, where they
can ‘‘feel’’ the fractal boundary of the drum. Related b
opposite behavior is typical for nonpolar waves in loca
disordered media, i.e., media with short-length correlation
the disorder. In this case, as soon as the wavelength exc
the correlation length of the disorder, the excitation ‘‘see
an almost uniform medium and propagates with little scat
ing ~the Anderson transition!.

Intrinsically, polar excitations in a disordered medium a
principally different from nonpolar modes because they c
ate charges throughout the medium, causing an infinite~or a
very long! range of interaction. This results in differences
spectra: Polar excitations have spectral gap, i.e., they
non-Goldstonian excitations, different from, say, acous
type vibrations@18#. Earlier we formulated a hypothesis th
the polar excitations of fractal clusters are strongly localiz
@19#. This implies that there exists only one spatial sc
characterizing the excitation that plays the role of wa
length and total localization length of the cluster simul
neously. This hypothesis was formulated analogously to
exander and Orbach’s strong-localization hypothesis
vibrations @20#. However, the theoretical prediction of Re
@19# did not agree with our subsequent results of more
tailed and higher-resolution numerical simulations@21#.
Later we found that polar eigenmodes of fractals clusters
not follow familiar behavior of strong or weak localizatio
@22#. Instead, these eigenmodes respect a new pattern tha
call inhomogeneous localization, where eigenmodes of v
different localization lengths, from the typical neare
neighbor distanceR0 ~the minimum scale! to the total size of
the clusterRc ~the maximum scale!, coexist at any given
frequency frequency in a very wide spectral range@22#. The
pattern of inhomogeneous localization is supported by ex
sive numerical investigation of this paper.

Polar excitations of clusters are traditionally called ‘‘su
face plasmons.’’ It is implied that the wavelengthl of the
exciting electromagnetic radiation greatly exceeds the t
size of the clusterRc . In a spherical particle, the surfac
plasmon is described by a spatially uniform polarization
tended over the whole sphere, oscillating harmonically
time. This polarization creates charges only at the surfac
the particle, thus justifying the name surface plasmon. As
have found and present in this paper, in contrast to the
havior of surface plasmons in regular spherical particles,
the whole spectral region the polar excitations of a la
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self-similar ~fractal! cluster fill in the whole space of the
cluster only on average. Each particular eigenmode is
tremely nonuniform. Consequently, it creates charg
throughout the volume of a cluster causing long-range in
actions. For these reasons, we will call the polar excitati
of disordered clusters plasmons, omitting the term ‘‘surfac
as inadequate.

The investigation in the present paper is aimed at und
standing spatial behavior of the eigenmodes of the dipo
eigenproblem~or eigenfunctions of the equivalent quantum
mechanical vector eigenproblem! defined below in Sec. II A.
We obtain and discuss numerical data of four types. First,
consider individual eigenmodes~Sec. III B!. We show that
that the eigenmodes of fractal clusters are chaotic, w
highly random and singular distributions of polarization~or
quantum-mechanical amplitude!. The eigenmodes chang
dramatically with small changes of their frequencies~eigen-
values!, which is another signature of chaos. We also sh
that not only individual eigenmodes but also local fields c
ated by external waves are chaotic and highly singular. T
chaos and singularity are undoubtedly responsible for
giant fluctuations of local fields and nonlinear-optical e
hancement found earlier@7#.

The other three groups of results deal with data avera
statistically yielding various distribution and correlatio
functions introduced in Sec. II B. This statistical averaging
done in two steps: over many eigenmodes belonging t
relatively narrow spectral region in the vicinity a given fr
quency for a single cluster and then over a large ensemb
clusters. Specifically, the second group of data deals w
statistical measures of the eigenmode localization~Sec.
III C !. It is based on the distribution functionP(L,X), where
L is the localization length andX is an eigenvalue of the
problem that is uniquely related to the physical frequen
v5v(X); see Sec. II A. We show in particular that for fra
tal clusters this distribution is very wide. In view of its width
the average localization length at a given frequencyLX
~‘‘dispersion relation’’! is not nearly sufficient to character
ize the distribution. A boundary of the distributionP( l ,X)
has scaling form and the whole distribution obeys scal
dependence as a consequence of clusters’ self-similarity.
nonfractal random clusters, the functionP(L,X) indicates a
delocalization transition of the eigenmodes as frequency
creases (X→0).

The third group of data deals with the correlation functi
S(r ,X) of the eigenmode amplitudes at two spatial poin
separated by a distancer at a frequencyv(X), averaged over
a narrow interval of frequencies and over an ensemble
clusters~Sec. III D!. This correlation function is called syn
onymously the dynamic form factor of a system. It is relat
to the imaginary part of the system’s polarizability and a
describes different physical phenomena including ene
losses of charged particles and equilibrium fluctuations
electromagnetic fields~as described by the fluctuation
dissipation theorem! @1#. In addition, the dynamic form fac
tor contains other physical information on a system inclu
ing, but not limited to, dispersion of different branches
elementary excitations and localization-delocalization tran
tions of these excitations. As found below in Sec. III D, f
fractal clusters, the dynamic form factor exhibits a nonu
form, quasichaotic~‘‘turbulent’’ ! pattern in the coordinate
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6496 56MARK I. STOCKMAN
frequency domain. This chaotic behavior appears abru
~as in a phase transition! as eigenvalueX @and frequency
v(X)# decreases and, correspondingly, the correlation len
of the eigenmodes increases. At the point of the transit
pronounced binary and ternary branches disappear, repl
by chaotic behavior. In a sense, the chaos found is stro
than the chaos predicted by Berry@10#, since not only indi-
vidual eigenvectors but also their dynamic form factor a
chaotic. Also in contrast to Ref.@10#, the correlation of am-
plitudes is long range, extending over the whole volume
the clusters, in agreement with the above-mentioned dat
the localization-length distribution. In contrast to fractals,
random nonfractal clusters the behavior of the dynamic fo
factor is predominantly nonchaotic, dominated by binary a
ternary branches disappearing at the point of a mesosc
delocalization transition asX→0.

The fourth group of data deals with the correlation fun
tion C(r ,X) of the eigenmode intensities~probability densi-
ties for the corresponding quantum eigenproblem! at two
points separated by a distancer for eigenvalues close toX
~Sec. III E!. Different from the dynamic form factor, the in
tensity correlation function is insensitive to relative phases
the eigenvectors, but is sensitive to their intensities~prob-
abilities!. This is one of the correlation functions studied f
quantum-chaos electronic problems in Ref.@11# with the
conclusion that there are no long-range spatial correlation
the absence of a magnetic field. In contrast, we find for
problem that there are such correlations extended over
whole available volume of system. Distinct from the d
namic form factorS(r ,X), the correlation functionC(r ,X) is
smooth in the whole spectral region. This implies that
fluctuations causing the turbulent behavior of the dynam
form factor are associated with phases of the cluster p
mons, while their intensities on average have a smooth, re
lar second-order correlator. Finally, we show that t
intensity-correlation functionC(r ,X) obeys a scaling rela
tion with a very high accuracy. This implies that there is on
one significant length scale in the problem and that it is
whole size of the systemRc . This property is certainly due
to the long range of the interaction and to self-similarity
the clusters. This scaling behavior is one of the signature
the inhomogeneous localization of the eigenmodes~cluster
plasmons!.

With regard to the analytical part of the paper, in Sec
we present the necessary relations in the spectral repres
tion. In particular, we introduce relevant correlation fun
tions and predict their scaling~Sec. II B! and we obtain
simple predictions within the framework of a binary appro
mation~Sec. II C!. Section III is devoted to numerical inves
tigation ~discussed above in the Introduction!.

II. BASIC RELATIONS

A. Spectral representation and linear response

For the sake of completeness, in this section we w
briefly summarize spectral theory@19# of the dipolar re-
sponse of clusters and also introduce necessary defini
and relations. Consider a cluster consisting ofN constituent
particle ~called below monomers! positioned at pointsr i ,
i 51, . . . ,N. The monomers are subjected to an extern
wave electric field~the field at ani th monomer isEi
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cillating at an optical frequency. This field polarizes mon
mers, inducing oscillating dipole momentsdi , which are
random quantities due to the random structure of the clus
We assume that the radius of the cluster is much smaller
the wavelength of the optical radiationRc!l. Then the in-
duced dipole moments obey a well-known system of eq
tions

Zdia5Ei
~0!2(

j 51

N

Wia, j bdj b , ~1!

whereZ5a0
21, a0 is the dipole polarizability of an isolated

monomer, greek letters in subscripts denote vector ind
(a,b, . . . 5x,y,z), with the summation over the repeate
indices implied,W is the dipole-interaction tensor

Wia, j b5H @r i j
2 dab23~r i j !a~r i j !b#r i j

25 , i Þ j

0, i 5 j , ~2!

and r i j [r i2r j .
Introducing a 3N-dimensional vectorud) with the compo-

nents (iaud)5dia ~and similar for other vectors!, we obtain
a single equation in a 3N-dimensional space@18,19#

~Z1W!ud)5uE0), ~3!

where the dipole-interaction operator is defined by its ma
elements as (iauWu j b)5Wia, j b . Similar to Ref. @19#, we
introduce the spectral variableX52ReZ that will be used
instead of the frequency and a parameter«52ImZ, which
determines dissipation in a monomer. The main advantag
spectral theory is the separation of the geometrical and
terial properties of a system. The latter enter the theory o
through the parameterZ, while geometry is taken into ac
count by eigenvectors of Eq.~3!. In particular, frequencyv
is a function~though not necessarily a single-valued functi
in the whole spectral region! of X defined by the relation
X52Rea0

21(v).
The solution of Eq.~2! is determined by the eigenvalue

wn and eigenvectors~eigenmodes! un) of the W operator
@19#,

~W2wn!un)50, ~4!

where n51, . . . ,3N is the eigenmode’s number. Thes
eigenmodes are the plasmons discussed in Sec. I. Equ
~4! has the form of a Schro¨dinger equation for vector~spin 1!
particles on a lattice$r i%, where un) are stationary wave
functions. Thus the present results are valid also for the c
responding quantum vector problem. The projection (iaun)
is the amplitude of annth eigenmode at ani th particle with
a polarizationa or the quantum-mechanical amplitude for
vector particle at thei th node with polarizationa.

The solution of Eq.~3! in terms of spectral representatio
is

dia5(
j
Gia, j bEj b

~0! , ~5!

whereG is the Green’s function
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Gia, j b5S iaU 1

Z1WU j b D5(
n

~ iaun!~ j bun!~Z1wn!21.

~6!

The polarizationP(r ) is given by the conventional formul
@1# Pa(r )5*xab(r ,r 8)Eb

(0)(r 8)d3r 8. For a composite con
sisting of the clusters, the susceptibilityxab(r ,r 8) is ex-
pressed in terms of the Green’s function as

xab~r ,r 8!5K (
i , j
Gia, j bd~r2r i !d~r 82r j !L , ~7!

where the angular brackets denote ensemble averaging
clusters, including their positions and orientation. For a co
posite consisting of randomly positioned clusters, the po
izability obviously depends only on the difference of coor
nates,

aab~r ,r 8!5aab~r2r 8!5K (
i , j
Gia, j bd~r2r i j !L . ~8!

The susceptibility ~7! in this case is xab(r ,r 8)
5naab(r2r 8), wheren is the concentration of clusters i
the composite.

B. Correlation and distribution functions

The dynamic form factorSab(r ,X) is defined as the cor
relation function of polarization amplitudes (iaun) and
( j bun) at two pointsr i andr j , separated by a given distanc
r5r i2r j for eigenvectorsun) with eigenvalueswn close to
the given value ofX. Namely,

Sab~r ,X!5
1

p
Imaab~X,r !

5K (
n,i , j

~ iaun!~ j bun!d~X2wn!d~r2r i j !L ,

~9!

where we also indicate the relation between the form fac
and the polarizabilityaab ~in establishing this relation, we
neglect the spectral width« compared toX). The same form
factor defines also the correlation of the equilibrium fluctu
tions of the polarization in the composite, in accord with t
fluctuation-dissipation theorem@1#.

Similarly, we introduce the second-order correla
C(r ,X), i.e., the correlation function of the eigenmode inte
sities (iaun)2 and (j bun)2,

C~r ,X!5K (
n,i , j

~ iaun!2~ j bun!2d~X2wn!d~r2r i j !L .

~10!

The correlators of Eqs.~9! and ~10! are normalized in the
following way:

E
2`

`

Sab~r ,X!dX5Ndabd~r !, ~11a!
ver
-
r-

r

-

r
-

E C~r ,X!d3r 5n~X!, ~11b!

where n is the spectral density of eigenmode
n(X)5(nd(X2wn). Equation~11a! is obviously equivalent
to the dipole sum rule. The polarizability~8! for a single
cluster satisfies the optical theorem

Sab~r ,X!5
«

pE aam* ~r2r 8!amb~r 8!d3r 8 ~12!

that follows from the orthonormality and closure of the ve
tor set u ia). We used this relation to independently che
results of numerical computations. We also note that
functionGX(r ) introduced in Ref.@22# is related to Eq.~10!
by GX(r )5C(r ,X)/n(X).

A useful parameter to characterize the localization of
nth eigenmode is its localization radiusLn defined as the
gyration radius for the eigenmode’s intensities,

Ln
25(

i
r i

2~ ibun!22F(
i

r i~ ibun!2G2

. ~13!

Apart from the distributions of Eqs.~9! and ~10!, we also
introduce the distributionP(L,X) of the localization lengths
at a given frequencyv(X), namely,

P~L,X!5K (
n

d~L2Ln!d~X2wn!L . ~14!

This distribution is normalized similar to Eq.~11b!,
*P(L,X)dL5n(X). The average localization lengthLX at a
given X can be expressed in the equivalent forms

LX
25K (

n
Ln

2d~X2wn!L Y n~X!

5E
2`

`

P~L,X!L2dLY n~X!

5
1

2E r 2C~r ,X!d3rY n~X!. ~15!

This length as a function ofX plays the role of the ‘‘disper-
sion relation’’ of excitations in the clusters~cf. Refs. @18#
and @21#!.

For self-similar~fractal! clusters there is no characterist
size except for the minimum size~the distance between nea
est monomersR0) and the maximum scale~the total size of
the clusterRc). Because the interaction is very long rang
for distancesr @R0 the minimum size should not be relevan
On the other hand, for the same reason, the total size
clusterRc may be an essential parameter. Therefore, one
expect scaling of the correlation and distribution functio
with Rc , namely,

S~r ,X!5SS r

Rc
,XD , ~16a!

C~r ,X!5CS r

Rc
,XD , ~16b!
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P~L,X!5PS L

Rc
,XD , ~16c!

where S, C, and P are functions whose first argument
dimensionless and of order 1 or less. If the maximum sc
Rc is also not relevant~possibly due to a strong dynam
screening!, one expects a power-law form of the correspon
ing functions

S~r ,X!}r s, ~17a!

C~r ,X!}r c, ~17b!

P~L,X!}Lp, ~17c!

wheres, c, andp are the corresponding scaling indices. B
cause the frequency parameterX enters the basic equation
~1! and~3! only in a combination with the cube of the radiu
then necessarily the indices should not depend on the
quency~parameterX).

C. Binary approximation

The correlation functions introduced above cannot be
culated analytically in the general case. Here we will emp
the binary approximation@19# to calculateS(r ,X). The bi-
nary approximation assumes that each of the contribu
eigenmodes is concentrated in two small regions separ
by some distancer. In that case the eigenmode equation~4!
can be solved exactly.

For a given pair of localization regions, the solution yiel
six eigenmodes. There are two longitudinal modes, i
modes where the direction of the oscillating dipoles co
cides with r. Denoting these modes asuz6), one gets the
corresponding eigenvalues and the localization amplitude

wz656
2

r3 , ~z6u1a!5
na

A2
, ~z6u2a!57

na

A2
,

~18!

where n5r/r. There are also four transverse eigenmod
ux6) and uy6), with the eigenvalues and localization am
plitudes

wx65wy656
1

r3 , ~x6u1a!5
na

~x!

A2
, ~x6u2a!56

na
~x!

A2
,

~19!

and similarly foruy6), wheren(x) andn(y) are normal unit
vectors in the plane perpendicular to the direction ofr. Sub-
stituting Eqs.~18! and ~19! into Eq. ~9! and taking into ac-
count that in this caser5r i j , we obtain for the dynamic

form factorS(r ,X)5 1
3 Saa(r ,X),

S~r ,X!5d~r !n~x!1 f ~r !FdS X1
2

r 3D2dS X2
2

r 3D
12dS X2

1

r 3D22dS X1
1

r 3D G , ~20!
le

-

-

e-

l-
y

g
ed
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s

where f (r )5N^d(r 2r)& is the distribution function of the
distancer, a smooth regular function.

To interpret Eq.~20! let us consider, e.g., the spectr
detuning to the red from the plasmon resonance. For met
clusters this is the most interesting case because the
frequency is in the visible range. In this caseX,0 and Eq.
~20! shows that at smallr there is a band of self-correlatio
that does not depend onX, i.e., is parallel to theX axis,
described by the firstd function in Eq.~20!. As r increases,
this band is followed by a narrow negative-correlation ba
described byX521/r 3, followed by another narrow band
with positive correlation described by

X52
2

r 3 . ~21!

The first correction to the binary approximation is th
ternary approximation, where an eigenmode is constitu
not by two but by three excited regions separated by d
tances much larger than their sizes~similar to what is shown
in the right lower panel of Fig. 1!. Consider, for instance, a
completely aligned symmetric mode, where the three exc
regions are center-symmetrically positioned along a stra
line. Such modes at a given total sizer yield six different
eigenvalues, where three of them are twice degenerate~de-
noted by^ 2),

wn52
1

r3 ^ 2,
2

r3 ,
1

r3 ~216A57!,
1

2r3 ~16A57! ^ 2.

~22!

The largest-magnitude eigenmode will manifest itself in t
dynamic form factor forX,0 as a band of positive correla
tion given by the equation

X52
1

r 3 ~11A57!. ~23!

Below, we will compare the simple picture predicted b
binary-ternary approximation to the results of numeric
computations.

III. NUMERICAL RESULTS

A. Procedures

Numerical calculations have been made using clus
cluster aggregate~CCA! clusters generated similarly to Ref
@23# and @24#. Random lattice gas~RLG! clusters also have
been used to elucidate the relative roles of disorder and f
tality. Clusters of both types are generated on a rectang
10031003100 lattice. The RLG clusters are generated
randomly placing monomers within a sphere whose radiu
chosen in such a way that these clusters have the same
ration radius as the CCA clusters with the same numbe
monomers to allow for direct comparison. Clusters of siz
N51500 andN5500 have been used to test the scaling p
dicted by Eqs.~16!.

The solution procedure consists in using the spectral
pansion technique as described above in Sec. II A. The
agonalization of the dipole-dipole interaction matrix h
been performed using the well-known Lanczos algorith
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FIG. 1. Spatial distribution of the local-field intensities for an individualN51500 CCA cluster shown over a two-dimensional projecti
of the cluster for the values ofwn indicated. The coordinates are shown in units of the lattice spacingR0. The values ofwn are in units of
R0

23. The value of the gyration radiusLn of the eigenmodes is shown relative to the cluster radiusRc .
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for large matrix diagonalization@25#. The number of
N51500 clusters used in the accumulation of the Mo
Carlo statistics is 300, and forN5500 it is 2000. Good sta
tistical convergence has been found for all quantities ca
lated.

B. Local fields and localization of individual plasmons

We will first consider local fields of individual eigen
modes~plasmons! in the system. An example of local-fiel
intensity distributions for four chosen eigenmodes of a C
cluster is shown in Fig. 1. Features of these distributions
quite remarkable. First, the distributions change dramatic
even for a small change of the eigenvalueswn . In particular,
the upper left distribution atwn51.029 is extremely local-
ized, with the localization radiusLn of only 0.068Rc . In
contrast, just a few tenth of 1 % change of the eigenvalue t
wn51.033 brings about a dramatic increase of the locali
tion radius that makes it comparable with the total s
Ln50.75Rc ~see the upper right panel!. However, this delo-
calized mode atwn51.033 is not uniform. To the opposite,
is formed by two sharp peaks~‘‘hot spots’’!. These peaks
correspond to coupled dipoles that oscillate coherently
assumed in the binary approximation~see Sec. II C!. The
above-described strong and random variations of eigen
tors ~eigenfunctions! even for next or very close eigenvalue
is one of the most intuitive signatures of~quantum! chaos.

A situation similar in many respects occurs for the low-wn
part of the spectrum~see the lower panels in Fig. 1!, i.e., in
the vicinity of the plasmon resonance in isolated monom
The difference from the case above is that the individ
groups of peaks are wider. Nevertheless, the intensity di
bution inside the peaks is highly singular and nonunifor
e

u-

re
ly

-
e

s

c-

s.
l

ri-
,

consisting of hot spots fluctuating in space and oscillating
time with coherent phases.

The behavior described above is in agreement with
previous findings of inhomogeneous localization@22#. How-
ever, the present findings disagree with our original hypo
esis of strong localization@19# that implies that the eigen
modes in most of the spectrum should have sm
localization radiiLn!Rc . The numerical results presente
above, along with the results that will be described belo
show that the related numerical findings of Ref.@26# support-
ing the strong localization hypothesis are indeed incorre
~All the eigenvectors shown and discussed in Ref.@26# have
very small localization radii.

Let us consider now spatial distributions of the local fie
intensity at a given monomerI i5dia

2 @see Eq.~5!# for the
case of excitation by anexternalfield. An example of such a
distribution is shown in Fig. 2 for two frequencies~param-
eterX) that are very close to each other and two perpend
lar linear polarizations. These distributions are also
tremely singular and fluctuating in space, even between
nearest-neighbor monomers. This property of the local fie
is the reason underlying the giant fluctuations of the lo
fields found earlier@7#. The overall width of the distribution
is of the order of the total cluster size. This is explained
the fact that the external radiation at a given frequency
cites a group of individual eigenmodes, within which the
always are delocalized modes. Because the interactio
very long rangedand the clusters are self-similar, there is n
intrinsic length scale characteristic of the problem. Con
quently, the spatial extent of the intensity distribution is lim
ited only by the clusters’ size.

A change of polarization of the exciting radiation at
given frequency brings about a dramatic redistribution
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FIG. 2. Spatial distribution of the local-field intensities for external excitation of an individualN51500 CCA cluster for the values of th
frequency parameterX and polarizations of the exciting radiation shown. The value of the dissipation parameter«51023R0
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local intensities and change in the maximum intensities~cf.
the left and right distributions in Fig. 2!. The physical reason
for this is that the resonant configurations of the monom
in most cases are highly anisotropic. This explains the h
selectivity of the cluster photomodification in the radiati
polarization observed experimentally@27#. The change of
frequency of the exciting radiation by less than 1% a
brings about pronounced changes in the intensity spatial
tributions ~cf. upper and lower panels in Fig. 2!.

Generally, the observed intensity distributions are in
good qualitative agreement with the recent direct experim
tal observation by Moskovits and co-workers of the ne
field optical fields in large silver clusters@6#. ~A quantitative
comparison is not possible because the distributions for
dividual clusters are inherently chaotic, strongly fluctuati
from one cluster to another.! However, the conclusion o
Ref. @6# that the observed phenomena support the strong
calization hypothesis contradicts the conclusions of
present paper. We have commented that the observation
Ref. @6# do not support its strong localization conclusio
@28,29#. In fact, these observations do support the inhom
geneous localization picture described in this paper, inco
patible with the strong localization.

The patterns of the local fields discussed above show
the inhomogeneous localization scenario of polar excitati
~plasmons! in large self-similar clusters is principally distinc
from both the strong- and weak-localization scenarios
nonpolar excitations. The above-discussed individual eig
vectors~eigenstates! are chaotic. Consequently, they are d
ficult to compare quantitatively with each other. Therefo
we consider below the statistical characteristics~measures!
of the eigenvectors.
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C. Localization-length distributions

The distribution of the localization lengths of Eq.~14!
calculated for an ensemble ofN51500 CCA clusters is
shown in Fig. 3. The most conspicuous feature of this dis
bution is its very large width. This width extends from a
most 2Rg ~whereRg'40, the mean gyration radius of th
clusters! to some minimum cutoff sizel X that is a function of
frequencyv(X). The cutoff is clearly seen in Fig. 3, where
is also indicated in the lower panel by a thick dashed lin

The distribution width is so large that the characterizat
of the distributionP(L,X) by a single dispersion relation
~15! is absolutely insufficient. For most of the spectral r
gion, the cutoff lengthl X by magnitude is intermediate be
tween the maximum and minimum scalesR0! l X!Rc . This,
along with the self-similarity of the clusters, suggests thatl X

scales withX, i.e., l X} l l. Indeed, Fig. 3 supports the poss
bility of such a scaling with the corresponding inde
l'20.25. We have also verified that the distributio
P(L,X) obeys with high accuracy the scaling relation~16c!
~data not shown!.

Another characteristic feature of the distribution shown
Fig. 3 is the presence of a narrow ridge seen in the low
panel between atX'1 and 3. In this region, the distributio
function scales as the approximately equidistant isolines s
gest, in accord with Eq.~17c! with p'23. The presence o
such a scaling region, albeit a narrow one, indicates that
eigenmodes forX'123 tend to be more localized an
screened. Therefore, the maximum scale does not affec
distribution and power-law scaling takes place. We will r
turn to the discussion of this region below in Sec. III D.

The clusters considered above are disordered and
similar ~fractal!. It is interesting to separate effects of diso
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der from those of fractality. To do so, we consider the d
tribution function P(L,X) for a disordered but not fracta
system, a random lattice gas; see Sec. III A. The result of
corresponding computations for a RLG is shown in Fig.
As one can see, the distribution forX*0.1 is similar to that
of a CCA ~Fig. 3!, characteristic of inhomogeneous localiz
tion. The major distinction from Fig. 3 is that the distributio
in Fig. 4 shows the complete delocalization of the plasm
for uXu&0.01 that appears in a narrow range. Such a d
calization is expected for the low-X part of the spectrum, i.e.
at frequencies close to the plasmon resonance of the
vidual monomers. In contrast, there is no such delocaliza
for fractal ~CCA! clusters, as seen in Fig. 3.

D. Dynamic form factor

As noted above in Sec. II B, the dynamic form fact

S(r ,X)5 1
3 Saa(r ,X) is an important measure that determin

the correlation of the eigenmode amplitudes, electromagn
~polarization! fluctuations, electromagnetic absorption by t
clusters, and energy loss of charged particles in cluster c
posites. The results of the computation ofS(r ,X) for
N51500 CCA clusters are shown in Fig. 5. The most s

FIG. 3. Localization-length distributionP(L,X) of eigenmodes
for CCA clusters ofN51500 monomers each. The position of th
lower-X cutoff l X is qualitatively indicated by the dashed bold lin
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nificant feature of this figure is a developed pattern of c
otic correlations. The ‘‘landscape’’ seen in Fig. 5 deserv
the name of a ‘‘devil’s hill,’’ where narrow regions of pos
tive and negative correlation are interwoven resulting in
network reminding one of turbulence. Interestingly enou
the islands of correlation~either positive or negative! have
almost vertical boundaries and the absolute values of
form factor for the adjacent regions are very close. This i
plies that the regions of positive and negative correlatio
form domains with narrow boundaries, resembling a bin
~telegraph! noise superimposed on some smooth surface

We emphasize that the changes ofS(r ,X) are not un-
stablerandom fluctuations. The chaos seen in Fig. 5 is co
pletely deterministic. Calculations with an independent s
tistical set of clusters of the same size reproduce the pic
of Fig. 5. We also note that the distribution in Fig. 5 is no
spatial distribution, but rather a distribution in a combin
coordinate-spectrum space, and it has no geometrical rela
to the spatial randomness of the fractal clusters. This dis
bution is obtained by averaging over a large ensemble
clusters and is a characteristic ‘‘fingerprint’’ for the give
type of clusters. The ensemble averaging does not sm
out the distribution.

The chaotic behavior of the dynamic form factor tak
place foruXu,1, while for uXu.1 this function is dominated

FIG. 4. Localization-length distributionP(L,X) of eigenmodes
for random lattice gas~RLG! clusters ofN51500 monomers each
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6502 56MARK I. STOCKMAN
by scaling ridges seen in Fig. 5~extending vertically in the
right lower corner of the bottom panel!, corresponding to the
similar structure in Fig. 3. This region of high eigenvalues
remarkable in many respects. In particular, the giant fluct
tions of local fields and enhancement of optical nonlinea
ties are maximum in this region@7#. We will call this a
scaling region because the correlation functions in this
gion are described by power dependences. To the left~to
smaller eigenvalues!, the scaling region borders the chao
region.

The binary-approximation band of positive correlation
Eq. ~21! is shown in Fig. 5 by the solid white line. Fo
0.1&uXu&10, this line coincides with the strongest positiv
correlation features, but departs from them foruXu*0.1. The
ternary correlation band of Eq.~23! is weaker, as one would
expect. In the same region of 0.1&uXu&10, it fits well the
corresponding band obtained numerically, as is evident fr
Fig. 5. We emphasize that the lines shown are given by E
~21! and ~23! and do not contain any adjustable paramete

The prediction of scaling@see Eq.~16a!# is tested in Fig.
6, where the dynamic form factor forN5500 monomer CCA

FIG. 5. Dynamic form factorS(r ,X) for N51500 CCA clusters.
A three-dimensional profile on double-logarithmic scale inr andX
is shown in the upper panel and the corresponding contour ma
the lower panel. The scale forS(r ,X) ~the vertical scale! is
pseudologarithmic to show simultaneously positive and nega
values of S(r ,X). To obtain it, a small region of the plot fo
uS(r ,X)u&10 is removed. The function plotted i
log10(uS(r ,X)u)sgn@S(r ,X)#. The solid white line is the plot of Eq
~21! indicating the band of binary correlations. The dashed wh
line is the ternary correlation band given by Eq.~23!.
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clusters is presented. One can see a remarkable general
larity between this figure and Fig. 5. However, fine details
the chaotic distribution are not completely reproduced. T
suggests that the fingerprint in its fine details may be spec
for the clusters of a given size. However, a study with mu
larger statistical sets and lattice sizes will be needed to ar
at a final conclusion regarding the scaling of the fine str
ture of the dynamic form factor. Another important concl
sion that can be drawn from the comparison of Figs. 5 an
is that the eigenmodes in a wide spectral range fill the wh
available space occupied by the cluster, limited by the to
size of the cluster. This feature is characteristic of the in
mogeneous localization pattern and inconsistent with str
localization.

To distinguish between effects of fractality and nonfrac
disorder, we compare below the above-presented results
the similar data for the RLG clusters, which are a rando
but not fractal. The dynamic form factor for RLG (N51500)
is displayed in Fig. 7. One can see that there is a dram
difference between fractal and non-fractal disordered~ran-
dom! clusters. For the RLG clusters, some chaotic struct
is seen only foruXu*1 ~i.e., in the blue wing of the spec
trum!. In a wide region, foruXu*0.001, the dynamic form
factor is dominated by the localized-plasmon branch s
extending diagonally in Fig. 7. There is a parallel band
negative correlation seen at smallerr . The binary-
approximation prediction~Sec. II C! for the position of the

in

e

e

FIG. 6. Same as in Fig. 5, but forN5500. Ther axis is scaled
so that the total vertical size remains approximately double
mean gyration radius of the clusters.
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56 6503INHOMOGENEOUS EIGENMODE LOCALIZATION, . . .
positive-correlation band@see Eq.~21!# is shown in the fig-
ure by the white solid line. It is in very good agreement w
the corresponding numerically obtained branch, as see
Fig. 7, especially keeping in mind that there are no adju
able parameters. The ternary-approximation band of pos
correlation is shown with the white dashed line and is also
a good agreement with the corresponding numerical feat
We note also that the correlation bands seen in Fig. 7 are
to localized plasmons. In contrast, a propagating wave wo
have resulted in a periodic pattern of parallel dark and wh
fringes.

Another important feature seen in Fig. 7 is the delocali
tion of the plasmons occurring atX'0.0025. At smallerX,
we see uniform positive correlation extending to the geom
ric limit of the clusters. This correlation implies that the p
larization is uniform inside the clusters, thus all charges
ing localized at the cluster surface. This is clearly a transit
to surface plasmons and it is a very sharp and well-defi
transition. This result is in agreement with the localizatio
length data of Fig. 4. Similarly to the Anderson transitio
this one occurs when the correlation radius of the wave
creases. A principal distinction is that the plasmons are
running, but rather localized waves. Therefore, the scatte
cross section for plasmons is not defined and the Ande
criterion is not applicable. Instead, the transition occ
when the radius of the localized plasmon becomes com
rable to the size of the cluster, i.e., the delocalization cr
rion is

FIG. 7. Dynamic form factorS(r ,X) for N51500 RLG clusters;
otherwise similar to Fig. 5.
in
t-
e

n
e.
ue
ld
e

-

t-

-
n
d

-
,
-

ot
g

on
s
a-
-

r .uXu21/3.Rc . ~24!

This delocalization has a mesoscopic nature because the
of the cluster is a governing parameter.

The transition frequency is determined by the equat
uXu.Rc

23}N21. In such a way, forN5500 RLG clusters
the transition is expected atuXu'0.008; otherwise the corre
lation pattern should be similar to Fig. 7. To test these p
dictions, we present in Fig. 8 the numerical results
N5500 RLG clusters. As one can see, there is indeed a s
of the delocalization-transition frequency touXu'0.008, as
expected. Except the transition position, there is a simila
between Figs. 7 and 8. In particular, the dominating band
correlation are described by the same binary- or terna
approximation formulas of Eqs.~21! and ~23!. This result
strongly supports the mesoscopic, related to the total siz
clusters, nature of the delocalization transition, distinct fro
the Anderson transition.

E. Intensity correlations

The sharp features seen in the devil’s hill~Fig. 5! and in
Figs. 7 and 8 are the boundaries where the dynamic fo
factor changes sign, i.e., correlation changes to anticorr
tion. One can infer from these figures that the change of
phase of the polarization is quite abrupt. To further elucid
the relative importance of the phase and magnitude fluc

FIG. 8. Same as in Fig. 7, but forN5500. Ther axis is scaled
so that the total vertical size remains approximately double
mean gyration radius of the clusters.
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6504 56MARK I. STOCKMAN
tions of the local fields, we consider below the second-or
~intensity! correlation functionC(r ,X) of Eq. ~10!. This
function is determined by the intensity correlations of t
local fields and is insensitive to changes of their phases.
second-order correlator for CCA clusters is presented
Fig. 9.

The most pronounced difference of the second-order
relation~Fig. 9! from the dynamic form factor~Fig. 5! is its
smoothness. This implies that the devil’s hill landscape
Fig. 5 is created due to the abrupt, chaotic changes of
phases of the local fields, but not their magnitudes. T
supports the qualitative picture of the amplitude correlat
of the plasmons as a binary~‘‘telegraph’’! phase modulation
superimposed on a very smooth envelope. Note that the
tensity correlation is extended over the whole cluster an
limited by the cluster size, in contrast to the case of elect
quantum-mechanical eigenproblems studied in Refs.@10,11#.

The above-described behavior of intensity correlation
consistent with the inhomogeneous localization of the p
mons. In particular, it implies that the eigenmodes~the plas-
mons! behave in a certain sense as a gas, filling up the wh
available volume of a cluster. A related property expected

FIG. 9. Second-order correlation functionC(r ,X) calculated for
CCA clusters ofN51500 monomers each, averaged over ensem
of 300 clusters. The upper panel is the distribution plotted in
triple-logarithmic scale and the lower panel is the correspond
contour map.
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such a localization pattern is scaling@see Eq.~16b!#. To test
it, we consider the correlation functionC(r ,X) for N5500,
displayed in Fig. 10. Comparing this distribution with that
Fig. 9, we conclude that forr @1 they are virtually indistin-
guishable. This result strongly supports the scaling predic
by Eq. ~16b!.

In Figs. 9 and 10, in the scaling region atuXu'223, the
power dependence of Eq.~17c! appears to hold. This conclu
sion is indicated by the straight lines of the slopes in
upper panels and by equidistant contours in the bottom p
els of Figs. 9 and 10. Its presence implies that in this reg
the plasmons do not feel the external boundary of a clus
This conclusion is consistent with the data derived abo
from the dynamic form factor.

The scaling can be conveniently traced in Fig. 11, wh
selected sections of the correlation function are shown.
scaling index found forX'2 is c522.1, in a reasonable
agreement with the value of22.3 obtained in Ref.@22#. The
size of the clusters in the present calculation is larger and
statistical accuracy is higher than in Ref.@22#. Note that
c5De21, where De is the Hausdorff dimension for the
plasmons. Because this index is less than21, it is impos-
sible that such a correlation is possessed by any mat
distribution. The value obtained shows that the plasmon
the wings of the absorption contour~for uXu'123) have an

le
e
g

FIG. 10. Same as in Fig. 9, but forN5500.
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FIG. 11. Intensity-correlation function
C(r ,X) for N51500 CCA clusters for
X522.0,21.0,20.5,20.1, as indicated in the
figure. The corresponding data forN51500 are
also shown by circles.
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essential singularity at smallr , supporting the conclusions o
Ref. @22#.

IV. DISCUSSION

In this paper we have investigated the localization pr
erties, correlation, and fluctuations of the polar eigenmo
~plasmon excitations! of large clusters. This problem i
mathematically equivalent to the Schro¨dinger equation
eigenproblem@see Eq.~3!# for vector particles with a dipole
interaction. The eigenmodes of the dipole-response prob
~plasmons! map to the eigenstates of the correspond
quantum problem. We have found complex behavior of
eigenmodes and their correlators, including inhomogene
localization and chaos of the individual eigenmod
deterministic-chaotic behavior of the amplitude correlat
function ~the dynamic form factor! in fractal cluster-cluster
aggregates, and the sharp delocalization transition for p
mons in a random lattice gas of spheres.

We have confirmed the earlier results of Ref.@22# that
plasmons in fractal clusters do not obey either strong-
weak-localization patterns. Instead, a different pattern, in
mogeneous localization, takes place. At any frequency~pa-
rameterX) there coexist plasmons with dramatically diffe
ent localization lengths, from the minimum scalel X to the
total size of the clustersRc ~see Secs. III B and III C!. The
individual plasmons, as illustrated by Fig. 1, are highly s
gular and chaotic, consisting of sharp peaks, strongly flu
ating in space. The plasmons with large coherence radiuLn
actually consist of similar sharp peaks, separated by a
tance of the order of the cluster size. In contrast, a delo
ized wave in a nonfractal disordered system has a sm
envelope~as confirmed for the plasmons in a RLG!.

The local fields in fractals induced by an external opti
excitation also are also chaotic, consisting of sharp sing
peaks strongly fluctuating in space. Despite their singu
structure on the small scale, these fields are delocalized
-
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the volume of the whole cluster, as seen in Fig. 2. When
polarization or frequency of the exciting wave change,
distribution of the local field intensity changes dramatical
supporting the general idea of~quantum! chaos in such sys
tems. These features are in a good qualitative agreement
the experimental data of Ref.@6#; however, the conclusion o
Ref. @6# that its experimental data support the strong loc
ization hypothesis is not confirmed~see also Refs.@28# and
@29#!.

For the fractal CCA clusters, the distributionP(L,X) of
the plasmons over their localization lengths is extrem
wide, supporting the coexistence of very differe
localization-length plasmons at virtually the same frequen
as shown in Fig. 3, which is a signature of inhomogene
localization. This distribution does not show any transition
localization or delocalization~weak localization! of the plas-
mons in the whole range of the spectral parameterX. The
distribution spread inL is limited from below byL& l X ,
wherel X scales withX asl X}uXul with l'20.25. The scal-
ing of this cutoff is attributed to the self-similarity~fractality!
of the CCA clusters.

In contrast to this case of fractal clusters, the distribut
P(L,X) for disordered but not fractal RLG clusters demo
strates a sharp transition to delocalization foruXu,0.01, as
seen in Fig. 4. This transition is confirmed and its mec
nism is elucidated by considering the dynamic form fac
for RLG clusters; cf. Fig. 7 and its discussion. ForX greater
than the edge of the delocalization transition (X.0.0025),
the dynamic form factor is dominated by the branch of
calized plasmons whose dispersion is in excellent quan
tive agreement with the binary approximation formula of E
~21!, as shown by the solid white line in Fig. 7. The fir
correction to the binary approximation, the ternary appro
mation of Eq.~23! ~shown by the white dashed line!, accu-
rately describes the position of the weaker satellite band
positive correlation.
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6506 56MARK I. STOCKMAN
As discussed, due to the long range of the Coulomb in
action, the delocalization transition of the eigenmodes occ
when their coherence radius becomes comparable with
total size of the cluster; cf. Eq.~24!. Consequently, distinc
from the Anderson transition, the delocalization of RLG
cluster plasmons is a mesoscopic phenomenon, dependin
the total size of the system. The underlying difference fr
Anderson localization is that the plasmons in the disorde
clusters are not propagating waves; in particular, the sca
ing cross section that would play a major role in the And
son localization is not defined for the plasmons. As follo
from Eq. ~24!, for N5500 clusters compared withN51500
clusters, the delocalization transition should happen atuXu
three times greater. This is indeed confirmed by the num
cal data; cf. Fig. 8.

One of the most interesting and intriguing findings of t
present study, in our opinion, is the ‘‘turbulent,’’ quasich
otic behavior of the dynamic form factor~i.e., the pair cor-
relation function of the amplitudes of the plasmons! for the
fractal CCA clusters; shown in Figs. 5 and 6. In contra
such a behavior is absent for random, but not fractal, R
clusters, cf. Figs. 7 and 8. The chaotic behavior of the
namic form factor for the present dipolar problem is drama
cally different from the short-range smooth correlation p
dicted in Ref.@10# and confirmed by Ref.@11# for electronic
quantum-mechanical problems. Despite the chaotic struc
of the dynamic form factor for fractal CCA clusters, it is we
reproducible and demonstrates good statistical converg
under ensemble averaging. Therefore, it is actually an id
tifying characteristic~fingerprint! of a given type of cluster,
depending on geometry and topology in particular. Whet
the fingerprint is universal for clusters of the same type w
different number of monomers is still a largely open qu
tion.

The chaotic behavior of the dynamic form factor for fra
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tal clusters has also another signature. As seen from Fig
and 6, the transition between the regions of positive a
negative correlation is very abrupt. They strongly resem
in this respect domains of magnetization in a ferromagn
The physical interpretation that we can give to this fact
that the binary approximation favors either the parallel
antiparallel alignment of the nearest excited regions~Sec.
II C!. Whether the geometry of these domains is itself frac
requires an additional investigation.

The chaotic behavior of the dynamic form factor for fra
tal clusters is a reflection of the underlying chaos of t
eigenmodes~plasmons!. These modes are chaotic in most
the spectral region~for uXu&1). As the frequency moves
away from the plasmon resonance, i.e.,uXu increases, chaotic
behavior changes to scaling. The scaling manifests itse
smooth ridges seen in all of the distribution and correlat
functions for CCA clusters atuXu*1. Despite the fact the
scaling region is comparatively narrow on the logarithm
scale, it is important because it corresponds to the maxim
enhancement of the optical responses@4,7#.

ACKNOWLEDGMENTS

I am grateful to S. T. Manson and J. E. Sipe for ma
very useful discussions. I am thankful to W. H. Nelson f
support and reading the manuscript. I appreciate comm
by M. V. Berry on the results of this paper. I acknowled
with gratitude the invariable support and help by T.
George. I thank L. N. Pandey for providing and adapting
computer routines for large-matrix diagonalization. I a
grateful to Institute for Mathematics and its Applications f
the hospitality during my participation in the progra
‘‘Mathematical Methods in Materials Science.’’ I acknow
edge grants from Georgia State University that allowed p
chase of the state of the art computer equipment that m
this investigation possible.
tt.

B.

tt.

ev.

e,

F.

. B
@1# E. M. Lifshitz and L.P. Pitaevsky,Statistical Physics~Nauka,
Moscow, 1978!, Pt. 2.

@2# J. Bauer, T.-M. Chang, and J. L. Skinner, Phys. Rev. B42,
8121 ~1990!.

@3# M. Moskovits, Rev. Mod. Phys.57, 783 ~1985!.
@4# M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, an

T. F. George, Phys. Rev. B46, 2821~1992!.
@5# A. V. Butenko, P. A. Chubakov, Yu. E. Danilova, S. V. Ka

pov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabk
V. M. Shalaev, and M. I. Stockman, Z. Phys. D17, 283
~1990!.

@6# D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalae
J. S. Suh, and R. Botet, Phys. Rev. Lett.72, 4149~1994!.

@7# M. I. Stockman, L. N. Pandey, L. S. Muratov, and T.
George, Phys. Rev. Lett.72, 2486~1994!.

@8# E. J. Heller, Phys. Rev. Lett.53, 1515~1984!.
@9# S. Tomsovic Phys. Rev. Lett.77, 4158~1996!.

@10# M. V. Berry, J. Phys. A10, 2083~1977!.
@11# V. I. Fal’co and K. B. Efetov, Phys. Rev. Lett.77, 912~1996!.
@12# T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, a

B. I. Shraiman, Phys. Rev. A33, 1141~1986!.
,

d

@13# S. Russ and B. Sapoval, Phys. Rev. Lett.73, 1570~1994!.
@14# A. Petri and L. Pietronero, Phys. Rev. B45, 12 864~1992!.
@15# P. de Vries, H. De Raedt, and A. Lagendijk, Phys. Rev. Le

62, 2515~1989!.
@16# A. Bunde, H. E. Roman, S. Russ, A. Aharony, and A.

Harris, Phys. Rev. Lett.69, 3189~1992!.
@17# B. Sapoval, Th. Gobron, and A. Margolina, Phys. Rev. Le

67, 2974~1991!.
@18# M. I. Stockman, T. F. George, and V. M. Shalaev, Phys. R

B 44, 115 ~1991!.
@19# V. A. Markel, L. S. Muratov, and M. I. Stockman, Zh. E´ ksp.

Teor. Fiz.98, 819~1990! @Sov. Phys. JETP71, 455~1990!#; V.
A. Markel, L. S. Muratov, M. I. Stockman, and T. F. Georg
Phys. Rev. B43, 8183~1991!.

@20# S. Alexander and R. Orbach, J. Phys.~France! Lett. 43, L625
~1982!.

@21# M. I. Stockman, L. N. Pandey, L. S. Muratov, and T.
George, Phys. Rev. B51, 185 ~1995!.

@22# M. I. Stockman, L. N. Pandey, and T. F. George, Phys. Rev
53, 2183~1996!.

@23# P. Meakin, Phys. Rev. Lett.51, 1119~1983!.



ca

F.

56 6507INHOMOGENEOUS EIGENMODE LOCALIZATION, . . .
@24# M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett.51, 1123
~1983!.

@25# J. Cullum and R.A. Willoughby,Lanzcos Algorithms for Large
Symmetric Eigenvalue Computations~Birkhauser, Basel,
1985!.

@26# V. M. Shalaev, R. Botet, and A. V. Butenko, Phys. Rev. B48,
6662 ~1993!.
@27# Yu. E. Danilova, A. I. Plekhanov, and V. P. Safonov, Physi
A 185, 61 ~1992!.

@28# M. I. Stockman, L. N. Pandey, L. S. Muratov, and T.
George, Phys. Rev. Lett.75, 2451~1995!.

@29# M. I. Stockman and T. F. George, Phys. World7, 27 ~1994!.


